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Abstract

In this work we consider the Parareal Algorithm, developed 1n [3], as a preconditioner for solving the optimal boundary control problem for cooling an electronic circuit. The constitutive

equations are obtained by modeling the circuit as a parabolic partial differential equation, where the cooling mechanisms are modeled using Neumann boundary conditions (control
variables) [1]. The optimal control problem is obtained by associating to the state and control variables, a linearized quadratic cost function like in [4]. The classical finite element method
- (Galerkin)- was implemented for the spatial dicretization resulting 1n a large scale system ODEs [2].

For the implementation of the preconditioner the time domain is divided into coarse time intervals, where the 1nitials conditions are arbitrary. Each of these coarse time intervals are
divided into fine time intervals that are solved simultaneously in several processors. The Conjugate Gradient method is used to update the initial conditions and the control variables, and

the Parareal method 1s used as a preconditioner to accelerate its convergence.

Mathematical model

The electronic circuits
subject to 1nternal heating
with cooling mechanisms are modelled

temperature v

sources LLLLTLEEL

-
3990000800088 0008088¢ (_> I DDDDDDDDD

by the heat equation using Neumann i iz — [BEEEERaas [ .

boundary conditions [1]. e Sooosoooo e

. — OO0O0O0000O0O0O —

Optimal control problem i — | coooooooo |

) q 3 :: OO0dOOoOoOo0d :

The  optimal  control  problem — |imoEEEEEE | T
in
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minimization problem. To design !

the controller we define a linear-quadratic cost function that assess the quality of the

solucion according to the parameters r, g and s:
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where p 1s the mass density of the material [%], cp 1s the internal energy density of the

min j(z(v) ,v)

() % [l‘o, l‘f],

material [KlKg] and c is the heat density generated by the internal heating sources [-5].
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State Equations
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For the spatial discretization we choose a set of equal triangular elements as in [2] and we
get a large scale ODEs by applying the standard finite element methods to the problem

(1).

Time domain decomposition (Parallelization)

We divide the time domain |¢, = 0,#; = T| as we see on the following figure:
Jumps
Secuential solution

Parallel solution
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k =Number of coarse grid sub-intervals (Processors) AT = T - = AT

[ =Number of fine grid sub-intervals k [
We modity slightly the cost functional, to have the same solution that we have using the

secuencial algorithm. It consists in the introduction of a penalization proportional to the
jumps:
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where € > 0 is the penalization parameter and z € R%, y € R?,
M, = MZ, Ay = A,{ c R, B, € R1*P; R, € RP*P; ¢;, € [RY.

Unconstrained Problem

The functional on the equation (2) yields the following Lagrangian:
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where p; y 1} are Lagrange multipliers.
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Preconditioned Conjugate Gradient

Adjoint State

Taking g—fk =0,Vk=0,1,--- ,IAc— 1 we have the adjoint Start
state: ) e Arbitrary Control Variables and
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these expressions are used for getting an expression of the States and the Functional =
functional gradient. Gradient I
The iterative algorithm (Corrections)
We start the CG with arbitrary values of the control Solve the Coarse Grid
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1s obtained by the adjoint method.

Preconditioner
The jumps of the adjoint state can be obtained from the residual of the following
equations:
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where Fa, = (Fl_lFO)l, =M, — 1A, Fy = M, 1s obtained from the Backward and

Fordward Euler schemes to get the state and the adjoint state respectively.

This fact is the reason for using the aproximation of the inverse of the matrix C! K C as

a preconditioner for the initial conditions. The aproximation of C is obtained by using
AT like stepsize. Then Fa, = G, = F; 'Fo, F1 = M), — ATA;,, Fo = M,

Numerical Results and Concluding Remarks

Boudary Flux (v) [W/m]

The numerical results show
that the parallel algorithm

The tables show the number of iterations of the
used algorithm:

k4181632 64 k 4 8 1632 64 reduces the computing

Iter. 35 37 42144 39 /| 1643216 8 4 time and allows the solving

Table: Escalabilidad Iter. 39139 42 41 38 of control problems that
=4 Table: Speed-up. demand large memory.

The figures show the control variables, the temperature of the circuite subjected to a
heating source of 4x10° %, and the evolution of the norm of functional gradient.
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Temperature of the plate (5x5cm) r = 1073, g = 1, s = 10, z(1,) = 320°K. p/t=Tk = 16 y [ = 16
(169 elements y 48 control elements)
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