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Abstract

In this work we consider the Parareal Algorithm, developed in [3], as a preconditioner for solving the optimal boundary control problem for cooling an electronic circuit. The constitutive
equations are obtained by modeling the circuit as a parabolic partial differential equation, where the cooling mechanisms are modeled using Neumann boundary conditions (control
variables) [1]. The optimal control problem is obtained by associating to the state and control variables, a linearized quadratic cost function like in [4]. The classical finite element method
- (Galerkin)- was implemented for the spatial dicretization resulting in a large scale system ODEs [2].
For the implementation of the preconditioner the time domain is divided into coarse time intervals, where the initials conditions are arbitrary. Each of these coarse time intervals are
divided into fine time intervals that are solved simultaneously in several processors. The Conjugate Gradient method is used to update the initial conditions and the control variables, and
the Parareal method is used as a preconditioner to accelerate its convergence.

Mathematical model

The electronic circuits temperature
subject to internal heating sources
with cooling mechanisms are modelled
by the heat equation using Neumann
boundary conditions [1].

Optimal control problem
The optimal control problem

is formulated as a constrained

minimization problem. To design

the controller we define a linear-quadratic cost function that assess the quality of the

solución according to the parameters r, q and s:

min J (z(v),v) =
1
2

∫ tf

to

(
r‖v‖2

L2(Γ) + q‖(z(t)− ỹ(t))‖2
L2(Ω)

)
dt

+1
2s‖z(tf )− ỹ(tf )‖2

L2(Ω),

s. t.


%cp

∂z
∂t = λ4z + c, en Ω× [to, tf ],

∂z
∂η = v en Γ× [to, tf ],
z(to,Ω) = zo,

(1)

where % is the mass density of the material [Kg
m3 ], cp is the internal energy density of the

material [ W
KKg] and c is the heat density generated by the internal heating sources [ W

m3].

For the spatial discretization we choose a set of equal triangular elements as in [2] and we
get a large scale ODEs by applying the standard finite element methods to the problem
(1).

Time domain decomposition (Parallelization)

We divide the time domain [to = 0, tf = T ] as we see on the following figure:

We modify slightly the cost functional, to have the same solution that we have using the
secuencial algorithm. It consists in the introduction of a penalization proportional to the
jumps:

min Jε(zk,vk,Zk) = J (z(v),v) +
1

2 ε∆T

k̂−1∑
k=1

‖zk−1(T−k )− Zk‖2
Mh
,

s. t.
{

Mhżk = Ahzk + Bhvk + ch, t ∈ [Tk,Tk+1],
zk(T+

k ) = Zk

}
k = 0, 1, · · · , k̂ − 1.

(2)

where ε > 0 is the penalization parameter and z ∈ Rq̂, v ∈ Rp̂,
Mh = MT

h , Ah = AT
h ∈ Rq̂×q̂; Bh ∈ Rq̂×p̂; Rh ∈ Rp̂×p̂; ch ∈ Rq̂.

Unconstrained Problem

The functional on the equation (2) yields the following Lagrangian:

L(z,v,Z,p,η) = Jε(z,v,Z) +

k̂−1∑
k=0

∫ Tk+1

Tk

pT
k (Mhżk − Ahzk − Bhvk − ch) dt +

k̂−1∑
k=0

ηT
k (zk(T+

k )− Zk).

where pk y ηT
k are Lagrange multipliers.

Preconditioned Conjugate Gradient

Adjoint State
Taking ∂L

∂zk

∣∣∣
∗

= 0,∀k = 0, 1, · · · , k̂−1 we have the adjoint
state:

Mhṗk = −Ahpk + q Mh(zk − ỹk),

pk(T−k+1) = − 1
ε∆T

(zk(T−k+1)− Zk+1) ∀k = 0, 1, · · · , k̂ − 2,

pk̂−1(T−
k̂
) = −s

(
zk̂−1(T−

k̂
)− ỹ)

)
∀ k = k̂ − 1, (3)

these expressions are used for getting an expression of the
functional gradient.

The iterative algorithm (Corrections)
We start the CG with arbitrary values of the control
variables and initial conditions. These initial values will
be corrected by the following scheme:

vi+1 = vi+, αidi
v, Zi+1 = Zi + αidi

Z, (4)

where v, dv ∈ Rp̂̂lk̂, Z, dZ ∈ Rq̂(k̂−1) and α ∈ R that is
obtained applying the steepest Descent condition. The
vectors dv and dZ are components of the search directions
The search directions di+1 = [di+1

v
T di+1

Z
T]T are

generated as a linear combination of the functional
gradient and the previous search direction:

di+1 = −∇Jεi+1 + βidi, βi =
(∇Jεi+1,Hdi)

(di,Hdi)
(5)

where Hdi ∈ R(p̂̂lk̂+q̂(k̂−1)) is the product of the functional
Hessian and the search direction. The functional gradient
is obtained by the adjoint method.

Preconditioner
The jumps of the adjoint state can be obtained from the residual of the following
equations:

I −FT
∆τ. . . . . .

I −FT
∆τ

I




1
ε∆TF0

1
ε∆TF0

. . .
1

ε∆TF0




I
−F∆τ I

. . . . . .
−F∆τ I




Z1
Z2
...

Zk̂−1

 = F

CTKCZ = F, (6)

where F∆τ = (F−1
1 F0)l̂, F1 = Mh − τAh, F0 = Mh is obtained from the Backward and

Fordward Euler schemes to get the state and the adjoint state respectively.

This fact is the reason for using the aproximation of the inverse of the matrix CT K C as
a preconditioner for the initial conditions. The aproximation of C̃ is obtained by using
∆T like stepsize. Then F∆τ ≈ G∆τ = F−1

1 F0, F1 = Mh −∆TAh, F0 = Mh

Numerical Results and Concluding Remarks
The tables show the number of iterations of the
used algorithm:

k̂ 4 8 16 32 64
Iter. 35 37 42 44 39

Table: Escalabilidad
l̂ = 4.

k̂ 4 8 16 32 64
l̂ 64 32 16 8 4

Iter. 39 39 42 41 38
Table: Speed-up.

The numerical results show
that the parallel algorithm
reduces the computing
time and allows the solving
of control problems that
demand large memory.

The figures show the control variables, the temperature of the circuite subjected to a
heating source of 4x105 W

m2, and the evolution of the norm of functional gradient.

Temperature of the plate (5x5cm) r = 10−3, q = 1, s = 10, z(to) = 320oK. p/t=Tk̂ = 16 y l̂ = 16
(169 elements y 48 control elements)

References
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